Propagated vaccine immunity is stronger if derived from natural infection.

1. Motivation & aims

Seasonal influenza-related respiratory illnesses cause an estimated annual death toll of 291,000-646,000 people [1]. Influenza vaccination can offer some protection against infection for the individual, while contributing to reduced risk of ongoing transmission via establishment of herd immunity [2]. Transmission models connected to data, when interfaced with health economic evaluations, are a key tool to inform national influenza vaccine policy [3]. However, prior modelling studies have typically treated

\[\alpha \min(\beta) \min(c) \]

Propagated vaccine immunity related linearly to prior season vaccine efficacy:

\[\alpha \min(\beta) \min(c) \]

1. Motivation & aims

2. Model overview

- Non-age, multi-strain model, capturing the four strains targeted by the quadrivalent influenza vaccine: A(H1N1)pdm09, A(H3N2), B/Victoria, B/Yamagata.

Fig. 1: Model schematic. Process A (circled capitalised letters), propagation of immunity; process B, modulation of current influenza season virus susceptibility; process C, estimation of influenza case load; process D, ascertainment of cases.

3. Immunity propagation model component

Fig. 2: Interaction between prior season exposure and start of season susceptibility. Strain susceptibility

\[\alpha \min(\beta) \min(c) \]

- Propagated vaccine immunity related linearly to prior season vaccine efficacy:

\[\alpha \min(\beta) \min(c) \]

4. Transmission & observation model components

- Vaccination model: ‘Leaky’ vaccine
- Epidemiological model: SEIR-type deterministic, ODEs (Fig. 3).

\[Z_m(y) = \left(\int \gamma_m(E_m^c + E_m^r) \, dt \right) \times 100,000. \]

Fig. 3: Transmission model schematic (for a single strain).

5. Results: Parameter inference

• Invoked an adaptive-population Monte Carlo algorithm [4]. Prior season influenza B cross-reactivity and carry over vaccine efficacy had little impact on immunity.

6. Results: Goodness-of-fit

• Augment model with age structure.
- Couple transmission model with economic evaluation frameworks.
- Appraise cost-effectiveness of prospective seasonal influenza vaccine programmes.

Acknowledgements

We thank Simon de Lusignan, Ivelina Tsolou and staff at the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) for granting use of RCGP RSC data. The GP consultation data resides with the RCGP RSC and is available via the RCGP RSC website (www.rcgp.org.uk/rsc). We acknowledge Stavros Petrou for helpful discussions. This work is independently funded by the National Institute for Health Research (NIHR) Primary Care and Public Health Programme, and the Health Protection Research Unit in Influenza at Oxford, University of Oxford. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

References